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D3.3 - Interval and fuzzy approach to affective states modeling @? BIPUI.AR

Executive summary

This deliverable is output of Task 3.1 and Task 3.2 activities dedicated to modeling uncertainty
via interval and fuzzy numbers about data samples and its labeling enabling joint processing of
sensor and psychiatric data. The primary goal of this report is illustrating the performance and
interpretability of the considered fuzzy approaches for modeling affective states and the related
imprecision. The proposed methods address the need of the considered practical context of
monitoring of bipolar disorder states. So far in the state of the art, mainly crisp methods have
been applied, e.g., for the establishment of the goundtruth period. However, due to the multiple
sources of uncertainty in the consider mental health monitoring context, crisp methods often
result ineffective. Therefore, we propose several methodologies based on fuzzy set theory that
enable to directly incorporate imprecision into the preprocessing and modeling.

The methodological advancements of this deliverable will be next applied in multiple practical
evaluations and scenarios for the considered use case of sensor and psychiatric data D1.3.
(“Final technical evaluation”) and D1.5 (“Final use case evaluation™) in Tasks within work
package 1. Further comparative analysis (including also crisp methods) will illustrate important
practical benefits and limitations of the proposed approaches.

This deliverable is also closely related to the software component developed under WP4
(“Integrated BIPOLAR software package”). It needs to be noted that all theoretical approaches
described in this deliverable have been thoroughly tested, carefully implemented and are
available for public use as an open-source software components.

This project has received funding from SMALL GRANT SCHEME Call under grant agreement
NOR/SGS/BIPOLAR/0239/2020-00.

IBSSPAN

Systems Research Institute Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
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List of acronyms

Acronym Explanation
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BD Bipolar disorder

ADP Acoustic Data Pilot
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SSPFCM Semi-Supervised Possibilistic Fuzzy C-Means
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PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses




1 Introduction

The aim of this report is to summarize the main findings from Tasks 3.1 and 3.2 conducted between months 1 and 24.
These tasks were focused on incorporating imprecision about psychiatric labeling through fuzzy modeling in the context
of sensor-based bipolar disorder (BD) monitoring.

The primary achievements of this deliverable encompass innovative approaches and considerations within semi-

supervised learning methods, specifically tailored for addressing uncertainty in fuzzy clustering. The report also delves

into theoretical considerations regarding effective and explainable steps in the realm of semi-supervised fuzzy clustering.



2 Related Work

The challenge of developing models for monitoring bipolar disorder typically involves the remote collection of patient data
and stationary psychiatric assessments. We designate the former as sensors data, encompassing elements such as self-
reported questionnaires [1], data from wearable devices [2], or acoustic features from phone calls collected by smartphones
[3]. The latter, i.e., data from psychiatrists, is referred to as psychiatric data. Further on, without loss of generality, we

confine sensors data to summaries of p acoustic features gathered from phone calls.

The sensors data is unsupervised. We observe phone call summaries z; € RP for j = 1, ..., N, lacking information

about the health status of patients during the time these calls transpired.

The psychiatric dataset contains information about health status. Labels are encoded as a categorical response
variable y denoting the class to which an observation belongs. For instance, a psychiatrist evaluates a patient and catego-

rizes their status using CGI-BD classification, yielding y € {mania, euthymia, mixed, depression}.

A form of partial supervision we do not consider is constraint. In such cases, information is provided of the nature
"observations zg and x; belong to the same class" or, conversely, "observations xg and x; must not belong to the same
class." The actual label of the considered class is not necessarily provided. We further refer to "partial supervision in the

form of labels" as "partial supervision."

Typically, the two data sources are merged to extrapolate labels y onto the unsupervised sensor summaries x; based
on common factors such as patient identifier and temporal proximity. To measure temporal proximity, the so-called ground
truth period is assumed [4]. For example, summaries of phone calls within a time window spanning from 7 days before
the visit up to 2 days after the visit are annotated with the label y obtained during the visit; the remaining data outside
of these windows remains unsupervised. Consequently, our problem is categorized as semi-supervised learning (SSL).
A comprehensive introduction and overview of SSL methods are provided by [5]. Semi-supervised learning is often
characterized as a setting between (completely) unsupervised and (completely) supervised learning. The key feature of
SSL is possessing additional knowledge about a subset of M observations out of all available N observations (M < N),

as is the case in monitoring BD.

In this context, natural questions arise regarding several sources of uncertainty. Firstly, extrapolation uncertainty
considers temporal closeness. Sensor data collected 7 days before the visit is more questionable in terms of belonging to
the same hidden disease phase y as the data collected on the day of the visit. This uncertainty, found to have been neglected

in the literature, is discussed by [6] (refer to Section 3.1 for more details).

Secondly, the annotation process related to the ground truth period is of an indirect nature. Psychiatrists do not listen
to the actual phone calls due to privacy restrictions. The labels from the psychiatric dataset are extrapolated based
on the assumption that voice features collected during a certain disease phase share common characteristics and correlate

with the response variable y. This assumption may fail, leading to what we term label uncertainty.

It’s important to note that psychiatrists deliver a single label y from each stationary assessment, and we do not question
the validity of the label (e.g., if the psychiatrist provides y = euthymia, we do not assert that the correct disease phaseis y =
mania). However, the label uncertainty problem is typically perceived as an issue of erroneous labels. Most methods, such

as [7] and [8], as well as literature surveys like [9-11], interpret uncertain labels as corrupted by noise, with the objective



of reducing this noise. Recent studies have highlighted the detrimental effects of training deep learning models with noisy
annotations [12]. However, we argue that in the context of BD monitoring, one may wish to modify the impact of a given
y on the outcomes of the learning procedure (either decrease or increase), without necessarily considering that a different
class should have been annotated. This modification of the impact of partial supervision should ideally be data-driven. We

proposed an idea for such a procedure in [6], which we termed Confidence Path Regularization.

Semi-Supervised Fuzzy Clustering (SSFC) is a class of semi-supervised models capable of handling the aforemen-
tioned uncertainties in a clear and explainable way. SSFC is a cross-functional topic, combining knowledge from various
fields: fuzzy logic, cluster analysis, and semi-supervised learning. Researchers contributing to SSFC have diverse back-
grounds and study different aspects of the semi-supervised fuzzy clustering problem. However, all various SSFC models,
including [6, 13-32], share the same concept of a soft assignment of each jth observation to the kth cluster, k = 1,...,¢,
rooted in fuzzy set theory [33]. The implementation of the membership degree u;, € [0, 1] for the soft assignment enables
the analysis of another level of uncertainty - the data uncertainty, allowing the modeling of so-called "hybrids" - obser-
vations belonging to more than one class (cluster). In contrast, "hard" clustering methods like K-Means or "hard" SSL
methods model each observation as belonging unambiguously to a single class only. Therefore, fuzzy sets and the Semi-
Supervised Fuzzy Clustering models, built on the concept of fuzzy sets, are the correct tools for modeling the complex

uncertainties present in the problem of remote monitoring of bipolar disorder.

3 Handling uncertainty in fuzzy clustering

In their classification of Semi-Supervised Fuzzy Clustering (SSFC) models, [34] categorize them into three groups: (i)
distance-based, (ii) constraints-based, and (iii) hybrids. The classification criterion is based on the type of partial supervi-
sion and the method used to incorporate it. This discussion focuses specifically on distance-based models, which formalize

the concept of similarity between observations and clusters using distance metrics.

In the context of distance-based SSFC models, observations (patterns) are represented by p-vectors denoted as x; €
RP, and clusters are represented by p-vectors called prototypes denoted as vj, € RP. The objective of SSFC is to formulate
an objective function that quantifies distances between observations and patterns, adjusted by memberships. Subsequently,

a minimization problem is posed, and an algorithm is proposed to minimize the objective function.

A classical example of a distance-based SSFC model is the Semi-Supervised Fuzzy C-Means proposed by [35],

defined by the following objective function:

c N c N
Jssecm = O > undi +a > > bi(uk — fir) dy, M

k=1 j=1 k=1 j=1

where: U = [uji]nxc is @ memberships matrix, V' = [vi]cxp is a prototypes matrix, X = [x;]nxp is a features
matrix, djj, is the Euclidean distance between an observation and a cluster prototype, F' = [f;] is a matrix introducing
partial supervision that contains assumed membership values, b; € {0,1} is an indicator variable equal to 1 iff x; is

labeled, and o > 0 is a scalar weighting the proportional contribution of partial supervision. Note that f;, € {0,1}.



The objective function Jssrcm can be seen as a penalization adjustment, pushing the membership u 5, towards a value
of 1 for the supervised observation. Effectively, supervised observations are encouraged to belong to the cluster associated
with their class, but they are not necessarily forced to. Note that a supervised observation may be classified into a different
cluster than the one associated with its class, allowing for data uncertainty identification. This data uncertainty enables
the identification of observations that deviate from the assumption that sensors data correlate with the given label obtained

from the psychiatric data.

Anidea proposed in [35] that we will find very useful in addressing label and extrapolation uncertainty is to incorporate

a so-called confidence factor conf; € [0, 1] into the model, resulting in:

c N c N
Jssrem = Z Z uhdiy + @ Z Z conf;b; (u;y, — fin) d3y,. @)

k=1j=1 k=1 j=1

The confidence factor conf; is described by [35, p. 790] as follows:

“The higher the confidence level, the more significant the contribution of the corresponding pattern to the objective

function.”

However, this confidence factor, in its original form, needs to be provided a priori by the user of the model. It
is noteworthy that the confidence factor conf; is not an independent factor, as it simply modifies the scaling factor «.
Consequently, observation-specific scaling factors a; = « - conf; can be introduced, and Equation 2 can be rewritten

accordingly.

c N
u]2 djzk + Z Z()éj(Ujk — fjk)zdjzk. 3)

c N
=1 k=1j=1

k=1j
3.1 Confidence Path Regularization

In our recent work [6], we tackled the challenges of extrapolation and label uncertainties inherent in the context of mon-
itoring Bipolar Disorder (BD). This research introduced novel methodologies to improve the accuracy and reliability of
the ground truth period and proposed an algorithm named Confidence Path Regularization to estimate adjusted confidence

factors for observations in the monitoring process.

Firstly, we identified limitations in the conventional binary approach used to establish the ground truth period. The
binary nature of labeling, where phone call summaries recorded within a specific window were treated uniformly, posed
challenges in reflecting the temporal aspects of data collection. To overcome this, we suggested employing continuous
functions to gradually decrease the confidence factor for observations recorded further from the visit. Figure 1 illustrates
the inadequacy of binary annotation and presents alternative strategies, including step and Gaussian functions, to address

this limitation.

Secondly, we introduced the Confidence Path Regularization algorithm to compute data-driven, adjusted confidence

factors conf; . This algorithm is grounded in the regularization assumption that highly certain supervised observations
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Figure 1: Binary (blue dots), step (red squares), and Gaussian (violet triangles) ground truth period extrapolation strategies.
Each strategy implements confidence as a function of time.

should consistently receive high degrees of membership to the supervised class by the Semi-Supervised Fuzzy C-Means

(SSFCM) method across varying confidence factor values [6].

The algorithm involves key parameters such as the number of regularization passes (R), the strength of each regular-
ization (reg,. € [0, 1]), and the weight assigned to the outcome of each regularization pass (w, € N). During each pass
(r =1,..., R), the confidence factor conf; for each observation is scaled by the regularization factor reg, before fitting
the model. The supervised class membership values obtained from the R models are then weighted by scalars w,. The
set of regularization factors {reg, } r=1.....r forms the confidence regularization path, and, in conjunction with the weights

w,, they constitute the parameters of the proposed method.

The adjusted confidence factor, denoted as conf;, is obtained through the normalization process expressed in Equation

4, where s(7) is an index of the column in the F' matrix for the i-th observation that contains the ground truth-based label.

R
1
conf} = > Uiy 0rs @
DI RPRA—

Table 1 provides exemplary data required to calculate the adjusted confidence factor conf for a given observation g

0

in a procedure composed of R = 2 steps.

Table 1: Exemplary values of CPR procedure.

. T
r | conf;, | reg,. | Ul i) | Wr

1 1.0 0.1 0.7 10
2 1.0 0.5 0.8 2

Below we present the calculations that involve normalizing the weighted sum of supervised class membership values,
resulting in the adjusted confidence factor conf} ~ 0.72 for the given observation 4o. This value indicates a high degree

of certainty for the supervised observation.
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1 1
- . T - = . 1 . 2 .
conf, = =3 D Ui stio) Wr = o+ w (Wia,s(ia) * W1+ Uiy (i) * W2)
IR A —t 1 2

1 1 8.6
T (0.7-10+0.8-2) 5 (74 1.6) 5 =0T

In conclusion, the adjusted confidence factors, derived through the Confidence Path Regularization algorithm, serve
as valuable outcomes for distinguishing observations with varying levels of certainty. These adjusted confidence factors
can be utilized as final results for analyses or as data-driven inputs for the Semi-Supervised Fuzzy C-Means model in future

applications.

3.2 Explainable Impact of Partial Supervision

As discussed in Section 3, the confidence factor conf; in the context of the Semi-Supervised Fuzzy C-Means (SSFCM)
model is not independent; it modifies the scaling factor «, resulting in observation-specific values a;. Given that « is
the primary hyperparameter regulating the impact of partial supervision in the SSFCM model, it becomes crucial for
uncertainty-handling procedures, such as the Confidence Path Regularization (CPR) approach, to gain a comprehensive

understanding of its role in the modeling process.

Surprisingly, we identified a gap in the literature concerning a unified and mathematically rigorous framework for
setting the value of . In [36], we addressed this gap by introducing an explainability framework and providing novel

insights into the role of « in both the Semi-Supervised Fuzzy C-Means and Semi-Supervised Possibilistic C-Means models.

Our argument challenges the implicit linear treatment of the impact of partial supervision as a function of o and
establishes this impact as a non-linear function of a.. This non-linear quantification holds significant implications for the

Confidence Path Regularization approach, as the weights w, should appropriately reflect this non-linear impact.

The proposed explainability framework defines an explanation as a description that satisfies three criteria:

(C1) interpretability,
(C2) completeness,

(C3) quantification.

This framework distinguishes between explanations and interpretations, where an interpretation is any description that
satisfies criterion (C1) and at least one more criterion (C1 or C2), but not all three criteria. The superiority of explanations

over interpretations is emphasized in our framework.

We adopt criteria (C1) and (C2) from Gilpin et al. [37], and introduce criterion (C3) as an additional requirement

specific to the scaling factor o: we aim to express the impact of partial supervision as a function IPS(«).

The established interpretations of ¢ in the literature were similar, adhering to the core meaning provided by Pedrycz

and Waletzky in [35]. Therefore, we consider the interpretation from [35] as canonical, formulating Interpretation 1.

11



Interpretation 1 (Pedrycz97) The role of the scaling factor « is to maintain a balance between the supervised and unsu-

pervised components within the optimization mechanism.

However, our investigation reveals that Interpretation 1 may implicitly assume IPSpg7(a) = «, as "balance” can
be understood in terms of "direct proportionality”. We, therefore, delve into the relationship between « and the key out-
comes of the SSFCM model, namely the estimated memberships U. The formula for the estimated membership of the jth

observation to the kth cluster 43 is presented in Equation 4.

1+Oz(bj —bj ch;:l fjg) 1 " Ozbj f, )
1+ ab; Yo A3, T+ ab

Ujp =
We focus on the second component of Equation 4 and propose a novel explanation:

Explanation 1 (IPS in SSFCMeans) The scaling factor o quantifies the impact of partial supervision as IPS(«) =

o
14+a’
establishing an Absolute Lower Bound for the membership of a supervised observation to the supervised cluster, ensuring

ui,s(i) > IPS(Q)

e

Figure 2 visualizes the IPS(a)=125

function along with its derivative BSZ%’I. The proposed explainability frame-

work in [36] offers substantial benefits: clear criteria distinguish interpretations from explanations, and the functional

form of the impact of partial supervision leads to new insights into the mechanism of partial supervision, enabling en-

hanced procedures. For CPR, we recommend improvements in the weighing mechanism: weights w,. should consider the
o

IPS(a) = 175> rather than being set to the inverse of the regularization factor reg, .

value of function

Figure 2: The impact of partial supervision IPS(«) for o € [0, 5] for both SSFCMeans (blue solid line) and its derivative
SSFCM’ (red dashed line).

3.3 Classification Error in Semi-Supervised Fuzzy C-Means

In accordance with Chapelle et al.’s comprehensive exploration of Semi-Supervised Learning (SSL) [5, p. 16], wherein
SSL is categorized as a supervised problem aiming to minimize classification error, our research focuses on the utilization
of the Semi-Supervised Fuzzy C-Means (SSFCMeans) model as a classifier. The primary objective is to induce a rule
7 : T; > Yy for classifying observations, guided by the cluster assumption that points within the same cluster are likely

to belong to the same class [5, p. 5].

12



The output of the SSFCMeans model for the ith observation is represented as a tuple (@;1, . . . , @;c). To determine the
predicted class, a defuzzification process is required. A straightforward approach involves selecting the class associated

with the cluster having the highest membership value. This decision is formalized by the decision rule 7 defined as:

4 k* = argmax ;. (5)
k

In the context of classification, an analysis of the relationship between training error and test error, as well as the
consideration of overfitting, becomes crucial. The induction of the classifier 7 : z; + y; from the training data D may lead
to a classifier that performs exceptionally well on D but lacks generalization capability, resulting in decreased performance

on independent test data 7. Therefore, a comprehensive evaluation of both training and test errors is necessary.

However, as demonstrated in our recent work [38], the overfitting analysis for the Semi-Supervised Fuzzy C-Means
model is atypical due to the nature of the training error, which is based on the formula for estimated membership ;s (;)
of supervised observations to the supervised cluster (see Eq. 4). Importantly, we establish a guaranteed lower bound as

expressed in Equation 6:

. o
Uy, s(i) = Tra (6)

e

This lower bound, denoted as 7 =,

is termed the Absolute Lower Bound to emphasize its significance.

For any value of o > 1, we can ensure that the cluster indexed by s(¢) will be the argument maximum, as the associated
membership 4; 4;y > 0.5. This leads to a 0% training error irrespective of the chosen performance metric for classification
error assessment (e.g., precision, recall, or F1 score). Such scenarios challenge traditional overfitting analyses, as the
classifier not only fits excessively to the local characteristics of the training data D but is also deterministically assured to

achieve artificially outstanding performance, regardless of the data evidence.

To address this issue, we propose considering a margin of making the training error € € [0, 0.5] during the selection
of the optimal value of «, taking into account both training and test classification performance. In terms of the scaling

factor o, we advocate considering « such that

o
1+«

=05—e 7)

It is noteworthy that introducing a margin for making the training error € may still result in 0% training error. How-
ever, in such cases, a traditional overfitting analysis becomes meaningful because the performance would no longer be

deterministic.

In [38], we provide examples of the analysis, including (A) a curated simulation scenario, and (B) real-life data

concerning the monitoring of bipolar disorder.

13



3.4 Time ordering

Until now, we have only assumed that z; € R”; however, it’s common for observations to have a temporal order, given that
we know the start time and end time of each phone call. For specific details, please consult Table 2 including exemplary

data; calls 2 and 3 occurred within hours on the same day, but the first call took place a couple of days earlier.

Table 2: Exemplary ordered data.

Patient ID | CallID | Data | Start | End
100 1 1 € R* | 15 October 2023, 15:33:01 | 15 October 2023, 15:38:12
100 2 9 € R* | 19 October 2023, 08:09:01 | 19 October 2023, 08:30:52
100 3 x3 € R* | 19 October 2023, 13:14:59 | 19 October 2023, 13:20:44

In general, this additional knowledge about the temporal domain can be leveraged in various ways, extending beyond

Semi-Supervised Fuzzy Clustering. Connected fields are named, for example, "data streaming,” "online learning," and

more.

One approach to exploit this information was proposed in [39]. The authors build on the clustering approach and
view the challenge of streaming clustering algorithms as an incremental classification problem. They assume a continuous
setting, where data can arrive at any time, and the model should integrate this new data to reconfigure itself. The novel

observation needs to be classified into one of the existing clusters, or a decision to form a new cluster must be made.

Another strategy for exploiting the temporal structure of the dataset was introduced in [40]. There, the temporal
domain is utilized to divide the dataset X of cardinality NV into several batches (data chunks) to identify patterns changing
over time at the batch level rather than individual observations. In [40], a method called Dynamic Incremental Semi-
Supervised Fuzzy C-Means (DISSFCM) is proposed, wrapping the core SSFCM model and applying it at the batch level,

appropriately processing and summarizing the results from fitting the model to each batch.

The preliminary idea proposed in this report is of a different nature. We suggest using the temporal order as a form of
external supervision. Indeed, the partial supervision we discussed relies on using labels y;, encoded in the form of f;j, to
push the respective supervised memberships u; ;) towards the value 1. Similarly, for a given observation 4o, one can adjust
the entire distribution of memberships {,,},, to be close to the distribution of memberships for a preceding observation
{tiy 1,1} - This preliminary idea, however, requires further investigation into its computational and algorithmic aspects.

Note that it might be combined with regular partial supervision y;.

4 Software component ssfclust

We developed an R library, ssfclust (which stands for semi-supervised fuzzy clustering), to implement two core Semi-

Supervised Fuzzy Clustering models, namely:
(i) Semi-Supervised Fuzzy C-Means,
(ii) Semi-Supervised Possibilistic C-Means.

The optimization algorithm and formulas’ details align with the description of both models presented in [36]. The

open-source library is freely available athttps://github. com/ITPsychiatry/ssfclust with the appropriate license.

14



To the best of our knowledge, ssfclust represents the first comprehensive open-source implementation of these
models in the R language in the form of a downloadable library. While regular packages for unsupervised fuzzy clustering,

such as ppclust [41] or fclust [42], exist, they do not cover the semi-supervised case.

Moreover, the library is entirely written in R, without the need for compiling C++ code, a common practice for
improving code efficiency. This approach enhances code readability for practitioners and facilitates easy extension of

these models without the necessity to rewrite crucial parts of the algorithms shared among all derivative models.
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